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Finite-Element Simulation of Induction Heat Treatment 
K.F. Wang, S. Chandrasekar, and Henry T. Y. Yang 

An efficient finite-element procedure has been developed for the analysis of induction heat treatment 
problems involving nonisothermal phase changes. The finite-element procedure first simulates the mag- 
netic field developed when currents flow through an induction coil by solving Maxwell's electromagnetic 
field equations; at the following step, it calculates the temperature distribution in the workpiece due to 
eddy currents induced by the magnetic field. The final stage of the simulation involves the determination 
of the distributions of residual stress, hardness, and microstructure in the workpiece. The finite-element 
analysis includes temperature-dependent material properties, changes in permeability of the workpiece 
at the Curie temperature, a mixed hardening rule to describe the material constitutive model, and the in- 
corporation of time-temperature-transformation (TTT) diagram. The procedure was applied to the simu- 
lation of the induction hardening of 1080 steel bar. Firstly, the magnetic field and temperatures developed 
in the workpiece during (a) the induction heating of an infinitely long 1080 steel cylinder by a single encir- 
cling coil and (b) the induction heating of a semi-infinite half-space by a single coil suspended above it 
were calculated using the finite-element procedures. These were validated by comparing them with ana- 
lytical solutions derived for these configurations using a Green's function method. Finally, to demonstrate 
the predictive capability and practical applicability of the current finite-element procedure, two exam- 
ples pertaining to the induction heat treatment of an infinite 1080 steel bar of square cross section and a 
notched finite 1080 steel cylinder of circular cross section were analyzed to predict the magnetic field, tem- 
perature, and residual stress distributions. The current finite-element procedure could be used as a pow- 
erful design tool for linking induction heat treating parameters with the mechanical property attributes 
of the heat treated component. 

1 Introduction 

SUITABLE thermal or mechanical treatments will produce exten- 
sive rearrangement of atoms in metals and alloys and corre- 
sponding marked variations in physical, chemical, and mechani- 
cal properties. A widely used process, which relies on such a 
thermal treatment to produce the desired thermal mechanical 
properties, is the induction heat treatment or the induction hard- 
ening process, and this is the focus of the present study. 

In the induction hardening process, the workpiece, which is 
made of an electrically conducting material, is passed through 
coils carrying an alternating electric current. The electromag- 
netic field produced by the current-carrying coils induces eddy 
currents in the workpiece, and consequently, the workpiece is 
heated resistively. The eddy currents in essence produce a spa- 
tial and time varying distribution of heat sources throughout the 
volume of the workpiece. After the workpiece has attained a 
suitable temperature distribution, the induction heating is 
stopped, and the workpiece is quenched in a bath or by means of 
a spray. The workpiece hardness and microstructure change dur- 
ing this heating and quenching cycle due to the phase trans- 
formations taking place in the workpiece material. Furthermore, 
residual stresses are also induced within the workpiece. ~11 

An important question that often confronts heat treatment en- 
gineers is, "What should induction heating and quenching pa- 
rameters be to obtain a desired distribution of hardness, micro- 
structure, and residual stress in the workpiece at the end of the 
induction heat treatment process?" In the vast majority of indus- 
trial heat treatment applications, due to the lack of well validated 
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computer simulation tools, this question is presently answered 
through an extensive series of experiments and trial and error. 
The objective of this study is to develop a comprehensive model 
of the induction heat treatment process for steels that incorpo- 
rates the solutions for the electromagnetic field, the mathemati- 
cal modeling of the phase transformations, and the heat transfer 
process occurring during the heating and quenching cycles, and 
thermal-elastic-plastic stress analysis. Such a model could en- 
able induction heat treatment process parameters to be linked 
with component attributes such as microstructure, hardness, and 
residual stress. 

2 Background 

There have been several investigations into the simulation of 
various aspects of the induction heat treatment process. In 1967, 
Dodd and Deeds [2,31 obtained the electromagnetic field in an in- 
finitely long cylinder of constant permeability when heated by a 
single circular coil and also under a coil suspended above a half- 
space of constant permeability. The contribution of Dodd and 
Deeds lay in the fact that they obtained a completely analytical 
solution for the magnetic vector potential. Finite-element meth- 
ods were used by Donea et a/. [41 and Chari [5] to obtain the elec- 
tromagnetic vector potential for some axisymmetric and two-di- 
mensional problems. More recently, Meunier et al.[6] calculated 
the electromagnetic field in some two-dimensional and axisym- 
metric configurations for different conditions of supply voltage 
and current applied to a coil using finite elements. All of these 
analyses did not go beyond a calculation of the electromagnetic 
field. 

The problem of calculating the temperature distribution in an 
inductively heated workpiece was addressed by Baker ~71 for a 
one-dimensional heat flow problem. The effect of  permeability 
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changes occurring during phase transition and its effect on the 
temperature distribution during induction heating was partially 
addressed by Mass6 et al. [8] using a finite-element method. The 
induction heating handbook by Davies and Simpson [1] gives 
some empirically obtained temperature distributions in indus- 
trial heat treatment problems. 

The calculation of residual stresses and hardness of induc- 
tively heated and quenched workpieces was carded out by 
Melander [9] for two specific cases: (a) the heating of an infi- 
nitely long cylinder by a uniform magnetic flux along its length, 
which is a one-dimensional problem, and (b) the induction heat- 
ing of an infinitely long cylinder by a stationary single coil when 
the workpiece moved with a constant velocity past the coil. In 
both these examples, Melander did not carry out any electro- 
magnetic field calculations, but assumed a field that had been 
well characterized for these two geometrical configurations. 
The assumed electromagnetic field had been derived for electri- 
cal and magnetic properties that were independent of tempera- 
ture. 

The above investigations and several others [1012] indicated 
that, although there had been much effort toward modeling the 
individual phase of the induction heat treatment process, there 
was little work done toward integrating the various modeling as- 
pects to carry through the modeling from the magnetic field pa- 
rameters to the final workpiece properties. This gap in the litera- 
ture motivated the present study. 

In this study, the finite-element method was used as the prin- 
cipal analysis tool to model the magnetic field, the temperature 
distribution, and the stress field during the induction heat treat- 
ment process. The magnetic field simulations using the finite- 
element procedure were validated using two examples, for 
which analytical solutions were obtained in this study by using a 
Green's function method. The present finite-element simulation 
of the magnetic field incorporated the effect of permeability 
changes occurring in the workpiece at the Curie temperature. 
This simulation was linked with finite-element procedures for 
temperature and stress analyses developed by the authors in an 
earlier paper [12] for the quenching of metallic materials. Thus, 
the simulation of the entire induction heat treatment cycle was 
carded out. 

Four induction heat treatment problems were analyzed to 
demonstrate the efficiency and capability of the present finite- 
element procedure. These were the induction heat treatment of 
(1) an infinitely long 1080 steel cylinder by a single coil, (2) a 
half-space by a single coil above it, (3) an infinitely long 1080 
steel square bar encircled by an infinitely long coil, and (4) a fi- 
nite 1080 steel circular notched bar. Unless otherwise stated, in 
all of these examples, the material properties of the workpiece 
were assumed to vary with temperature. The current density in 
the coil was selected for each example based on the criterion that 
the surface of the workpiece should reach at least the austenitiz- 
ing temperature. 

3 The Computational Model 

The simulation of the induction heat treatment cycle consists 
of three parts: (1) analysis of the magnetic field generated by 
currents flowing in the induction coil and the calculation of the 
heat source induced by them in the work material, (2) tempera- 

ture analysis of the induction heating and quenching processes, 
which are both coupled to the phase transformation process and 
require a nonlinear finite-element analysis, and (3) stress analy- 
sis based on the thermal loads generated from the temperature 
analysis. The computational formulation for each of these simu- 
lations is given in this section. 

3.1 Analysis of the Magnetic Field 

To obtain the heat sources generated within the material dur- 
ing the induction heating process, it is necessary to solve for the 
magnetic vector potential generated in the workpiece when a 
current flows through the induction coil. This requires a solution 
of Maxwell's equations describing the electromagnetic field 
with the appropriate boundary conditions. This is briefly re- 
viewed below and then applied to the induction heating prob- 
lem. Maxwell's equations for the magnetic field are: [13] 

8D 
V •  

Dt 

~B 
V x E - -  

8t 

V . B = 0  

V . D = p  [1] 

where H, J, E, D, B, and p are, respectively, the magnetic field 
strength, current density, electric field strength, electric dis- 
placement, magnetic flux density, and charge density. The me- 
dium (work material and/or air gap) is assumed to be linear and 
isotropic, but not homogeneous. The constitutive relations are: 

B=IxH 

D =EE 

J = oE [21 

where Ix, e, and o are, respectively, the magnetic permeability, 
permittivity, and electrical conductivity of the medium. 

It may be shown [24] from the second and third equations in 
Eq 1 that the most general electric and magnetic field can be ex- 
pressed in terms of the magnetic vector and electric scalar poten- 
tials, A' and ~,  in the following manner: 

B = V x A '  [3] 

~A" 
J = --ff - ~ t  - t~V~ [4] 

The displacement currents, 3D/~t, on the right side of the first 
equation in Eq 1 can be neglected at the frequencies of interest to 
our induction heating problem. [2,4] When B and J are expressed 
in the above form, the second and third equations in Eq I are sat- 
isfied identically, and the equations for A' and �9 are then ob- 
tained by substituting Eq 3 and 4 in the first equation of Eq 1. 
This gives: 

V• V x A '  =--~ +J0 [5] 
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where J0 = ---~VO is the source current density. The current in 
the coil is assumed to be sinusoidal with a frequency 60, and 
therefore: 

Jo = Jo d~  [ 6 ]  

Assuming that A' varies sinusoidally with time, A' = 
A" e j(~162 = Ae j~176 Equation 5 then becomes: 

V x (1V x AI=-jox~A + J 0 [7] 

or 

-I V(V" p A) - 1V2A + V I ~ / x  (V x A) = - J ~ 1 7 6  + J0 IX 

For induction heating problems, V �9 A = 0, [3] and this leads to the 
following differential equation for the magnetic vector potential 
A: 

1 t'l'~ 

For the axisymmetric case, the only nonzero component of 
the vector potential is Ao(r,z). Dropping the 0, Eq 8 becomes: 

I(OXA 10A 02A a ~  . , 

0(l/ix)~l OrAl+ 0(1/#) OA + j o =  0 [9] + 
Dr Lr ) 0z 0z 

For the two-dimensional Cartesian case: 

lr O2Zx] Oax  
7 t T - /  + J-xo,<,Ax - t, Ox - J+ Jox = O 

l(02A 02A ~ O(1/~t)g~A OAx'~ 
- I  s--~-~ + ~ | - j o ~ o A  + - - I  - - - Y - - - | +  0[10] 
IXtOxZ ~ J Y Ox t Ox Oy) Joy= 

The variational formulation of the equations for the finite- 
element solution can now be derived by using the identity in Ref 
4. It was assumed that the magnetic permeability, Ix, is a constant 
within the domain D bounded by the surface S. For the axisym- 
metric case, the variational form is 

~ffa~VAV6AdD+ff~D(~+Jox~) A6AdD 

= S~S JoDAdD + ~ I OA&4dS [11] 
D SIx 0n 

For the two-dimensional case, the variational form is 

l~ffDl~--x O ~A O~-SAldD+~fjox~ASAdD ~xDA+~y ay ) o 

=~/oSAdD+~s ~ OA 7n ~ds [12] 

With finite-element discretization, the complex vector potential 
can be written in matrix form as: 

A = [N]A [13] 

8A = [N]SA [14] 

where [N] is the matrix for the shape function and A is the matrix 
representing the nodal values of the complex vector potential. 

Substituting Eq 13 and 14 into Eq 11 and 12, the general form 
of the finite-element equation is obtained for each element: 

{[k]e + {/]e} {A} = {F e } [15] 

where for the axisymmetric case: 

~.= ff 2@Ni a_NjN. ONiONj~ 
J J:vel.ttOr Or +~--z Oz~ rdrdz 

l~j= f~v2n(~ + J~ N'~j rdrdz 

F~ = ff 2ffJoNirdrdz + f 1N.OAds 
a o  e d 1 v S'IX On 

and for the two-dimensional Cartesian case: 

 _ff O ON.  
iJ--JJve ixt O x OX +--~yy ~ dXdy 

l e. = • jo.~NN, dxdy 
lJ ddve  l J 

s ~ IX On 

In the formulation, the permeability, It, is assumed to be a 
constant within an element, but can vary from one element to an- 
other. 

3.2 Temperature Analysis 

The calculation of the temperatures induced within the work- 
piece during the induction heating and subsequent quenching 
cycle requires a solution of the heat equation with convection 
boundary conditions. The analysis is described in detail for the 
quenching process in an earlier paper, [12] but will be briefly re- 
viewed here. 

The transient heat conduction equation for a solid with an in- 
ternal heat source is 

V(kVT) +/ /=  pC 0T [16] 
POt 

where k, p, and Cp are, respectively, the thermal conductivity, 
density, and specific heat of the solid, and// is  the rate of heat 
generation within the material. 
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During induction heating, eddy currents are induced in the 
workpiece by the externally applied electromagnetic field, and 
these currents generate sources of heat within the workpiece 
through resistive heating. The rate of heat generation at any 
given point within the solid during heating cycle is given by: [8] 

Or A[ 2 
/ / -  2 [17] 

where [ A [ is the absolute value of the complex magnetic vector 
potential at that point. During the quenching cycle,//is the inter- 
nal heat source arising out of the enthalpy change produced by 
the phase transformations within the material. 

The convective boundary conditions for the problem at the 
free surface of the workpiece are given by: 

-kVT= h(73(~- 7") [18] 

where h(T) is a pseudoconvective heat transfer coefficient that 
includes both convection and radiation effects and is tempera- 
ture dependent, and Ts and T= are the temperatures of the solid 
surface and the surroundings, respectively. 

Because the heat treatment of steels is of major concern in 
this study, a typical microstructure for steel will be composed of 
one or more of the following phases - -  austenite, ferrite, pearl- 
ite, cementite, bainite, and martensite. In the finite-element for- 
mulation, the material properties, P, of the resulting microstruc- 
ture within an element were assumed to be a linear combination 
of the corresponding properties of each phase Pi weighted pro- 
portional to the volume fraction, Fi, of that phase present within 
the element. Any material property, P, of the solid is therefore 
written as: 

6 

P(Fi,T) = ~ Pi(t)Fi [ 1 9] 

i=1 

The kinetics of the various diffusion transformations (that is 
nonmartensitic) were described in the formulation by the fol- 
lowing Avrami-type of equation: tt4,151 

17i =1-expI-Ci(t)olVi(r) 1 [20] 

where Ci(T) and Ni(T) are material parameters that were calcu- 
lated from the experimental isothermal transformation diagram 
for the material, [16] and 0 is the transformation time. Scheil's 
principle, as described in Ref 17, was used to calculate the incu- 
bation period after which any transformation begins. When the 
summation of the ratios 

z~t i 

E oci(T/) -- 1 
i=1 

[211 

the transformation was assumed to begin. Here, ex,{Ti) is the time 
required at temperature Ti for the isothermal transformation to 
begin. 

The fraction F6 of martensite formed at any given tempera- 
lure was assumed to be described by Koistinen-Marburger 
law:0S~ 

F 6 = {1 - exp[-ot(M s - T)]} 1 - F/ [22] 

with r = 1,10 x 10-2K q and Ms being the martensite start tem- 
perature, 

Equations 19 through 22 describe the important details of the 
phase transformation process that were used in the finite-ele- 
ment formulation for the temperature analysis, For more details 
of this formulation, see Ref 12 and the references therein. 

3,3 Stress Analysis 

During induction beat treatment, the workpiece undergoes 
plastic deformation due to thermal stresses arising from the 
sharp temperature gradients, tn Ref 12, a thermo-etastic-plastic 
model that incorporated temperature-dependent material prop- 
erties was developed for the stress analysis of the quenching of 
steels. The same formulation was used in the stress analysis of 
the induction heat treatment problem described in this study. The 
formulation is briefly described; for greater detail, the reader is 
referred to Ref 12. 

The total strain was assumed to be the sum of the elastic, plas- 
tic, and thermal strains and can therefore be written as: 

e..,: = e e: + e~ + el: [231 

In the present analysis, the yon Mises yield function was used, 
and the plastic flow was assumed to be controlled by a mixed lin- 
ear hardening rule. The yield function then becomes: 

1 S -  1 2 
F = ~(Si j  - o~ij)( ij O~ij) -- 3 ~ ;  [24] 

where Sij and o~ij are, respectively, the components of the devia- 
tor stress and the coordinates of the center of the yield surface. 

The stress-strain curve for the material was assumed to fol- 
low a linear hardening rule, with the yield stress corresponding 
to an accumulated plastic strain EP given by: 

•y = %0 + (1 ~)H's p [25] 

where ~y0, eP, and H ' ,  respectively, are the initial yield stress, ac- 
cumulated plastic strain, and plastic modulus. 13 is a weighting 
factor that takes on values between 0 (isotropic hardening) and 1 
(kinematic hardening). 

In the analysis of induction heat treatment problems where 
the thermal loading at every point is cyclic over one cycle, a 
combination of isotropic and kinematic hardening (mixed hard- 
ening) is preferable. In a mixed hardening model, the movement 
of the center of the yield surface can be obtained from Prager's 
rule as: 

2 
d(zii = ~13H'de~ [26] 

The stress increment for these constitutive equations and 
plastic yield criterion was derived in an earlier paper I~2l by the 
authors as: 
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doij = 2Gdeij + 8ijK(dekk - ddkk ) 

2G(Sij- O~ij)(Skl- a~t)dekl 
W 

~c 

2~e -~T dT 1 ~ dK 
+ 3W ($6 - ~ + 3 0 ~ k k K  - [27] 

where 

W :  2"2  (1 + ~ G )  

G and K are, respectively, the shear modulus and bulk modulus 
of the material. The effective stress fie in the material is given by: 

2 3 
~ e = 2 ( S i j  - e i j ) ( S i j  - O~(i) [28] 

4 Applications 

4.1 Induction Heat Treatment of  an Infinitely Long 1080 
Steel Cylinder by a Single Coil 

The induction heat treatment of a circular 1080 carbon steel 
cylinder 40 mm in diameter was simulated. The cylinder was as- 
sumed to be initially at a uniform temperature of 25 ~ It was 
then heated by a circular induction coil having a square cross 
section 4 by 4 mm. Figure 1 shows the configuration of the cyl- 

z 

e d ~ r  

b ~'XCoi I ~, ~ 40mm-~ 
L1080 steel cylinder 

7, 

l Element Mesh 

b a 
r 

L 

Fig. 1 Finite-element modeling for the induction heat treat- 
ment of an infinitely long 1080 steel cylinder encircled by a coil. 

inder and the coil and the finite-element mesh used in the simu- 
lation. The current density in the coil was assumed to be 7 x 109 
A/m 2 and varying sinusoidally at a frequency of 60 Hz. The val- 
ues of relative permeability and Curie temperature for 1080 steel 
were 90 and 725 ~ respectively. A relative permeability of 90 
indicates that the absolute permeability of  1080 carbon steel is 
90 times that of air. During the heating cycle, the energy losses 
due to convection at the free surfaces of the workpiece are typi- 
cally small compared with the heat generated by the eddy cur- 
rents and hence was neglected. The variation of the various ther- 
mal, physical, and mechanical properties of 1080 steel with 
temperature were taken from Ref 19 and 20, and these values 
were used in all the computations unless otherwise stated. 

To verify the finite-element program, closed form solutions 
were derived for the magnetic vector potential and the tempera- 
ture within the workpiece during the initial stages of  induction 
heating. These solutions were obtained using a Green's function 
method originally proposed by Dodd and Deeds [2] for the induc- 
tion heat treatment of  an infinitely long cylinder. Dodd and 
Deeds obtained the magnetic vector potential within a two-con- 
ductor cylinder rod, i.e., a rod composed of two coaxial cylin- 
ders having different electrical conductivities ~1 and (~2 (see Fig. 
2), when heated by a circular coil that was infinitesimally thin. 
Such a coil is referred to as a delta-function coil. The derived po- 
tential for the delta-function coil is referred to as the Green's 
function for the vector potential. However, in their derivation, 
the permeability of two-conductor workpiece was assumed to be 
constant throughout, and the permeability of the air gap was also 
assumed to be the same as that of the workpiece. In practice, this 
is not the case. From the Green's function for the vector poten- 
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Fig. 2 Induction heating of a two-conductor rod encircled by 
one coil. 
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tial, Dodd and Deeds  [2'31 obtained in the usual manner the vector 
potential in the two-conductor workpiece when heated by a cir- 
cular coil having a finite square cross section. 

In the present study, the Green's function analysis of Dodd 
and Deeds was extended to obtain the vector potential in a two- 
conductor rod (see Fig. 2), in which the coaxial cylinders have 
not only different electrical conductivities IJ 1 and ~2, but also 
different permeabilities Pl and P2. Also, the air gap permeability 
was assumed to be equal to go, different from Pl and P2. This 
model represents the essential features of a typical induction 
heat treatment problem including the Curie phenomenon. For 
example, when a cylinder is inductively heated by a circular coil 
as in Fig. 2, the region near the surface is heated faster than the 
interior, and when the near surface regions reach the Curie tem- 
perature, they undergo a magnetic phase transition resulting in a 
drastic decrease in the permeability. Typically, the permeability 
at and above the Curie temperature of the workpiece material 
would be essentially the same as that of air. Thus, the model 
shown in Fig. 2 would represent a cylinder whose interior over a 
region of radius a is below the Curie temperature and has perme- 
ability gl, whereas the surface regions over a thickness of ( b -  a) 
are above the Curie temperature and have a permeability of P2. 

The governing differential equation in cylindrical coordi- 
nates for the magnetic vector potential A (i) in region i of  the cyl- 
inder is 

~)2A(i) 1 ~A (0 ~2A(i) A (i) 
ar 2 + ~ d ~)z2 r2 jogtiO i = 0 [291 

where Pi and t~i are, respectively, the permeability and electrical 
conductivity of the workpiece in the region of interest. For the 
geometry shown in Fig. 2 and for a delta-function coil of 
strength Jo, the boundary conditions are 

A( l)(a,z - z0) = A(2)(a,z - Zo) 

1 ~a(1)(a,z - z~) = 1 ~A(2)(a,z _ z0 ) 
gt  Or u g2 

A(2)(b,z - zo) = AO)(b,z - zo) 

l ~rrA(a)(b,z- Zo) = ~o ~-rA(3)(b,z- z o) 
P2 

A(3)(r0,z - Zo) = A(4)(r0,z - z0) 

l~-A(3)(ro~-Zo)=~o~-A(4)(ro~:-Zo)+JoS(Z-Zo) [30] 
go 

The solution of the vector potential for these boundary condi- 
tions, which is the Green's function, is given in Appendix 1. This 
was obtained by solving the differential equation using the 
method of separation of variables. For a given current density 
applied to coils of finite cross-sectional area, the solutions for 
the vector potential in each region of Fig. 2 were obtained by in- 
tegrating the Green's function over the cross-sectional area. This 
yielded: 

A(1)(r,z) = POlO ~0 Cl(CX)F(ot,rl,r2)ll(C~lr)Z(o~,z)do L 
7~ 0 

A(2)(r,z) = ~ fO ~ [C2(0011(0~2r) 

+ D2(tx)K 1 (Otzr)]F(oqr l,r2)Z(ct,z)dOt 

a(3)(r,z) = g0]o ; [I1 (~ 
K 0 

+ D3(00K 1 (~r)]F(oqq,r2)Z(ot,z)dt~ 

AO)(r,z) = POlo I ~ [D3(ix)F(ot,rl,r2) 
0 

+ G(et,r 1,rz)]K l(ow)Z(tx,z)dtx 

a(3)(4)(r,z) = PoJo J~ [ll(Ctr) 
0 

+ D3(oOK 1 (otr)]F(~,r,r2)Z(~,z)do~ 

+ POlo j~  [D3(fx)F(c~,rl,r) 
7~ 0 

+ G(o~,r 1,r)]K 1 ({zr)Z(o~,z)dot 

where J0 is the source current density in the coil: 

D(t~) = [l~ctzblo(Ct2b)Kl(ab) + ( ~ I  I ((x2b)K0(otb) 
P20 

+~176176176176 

- [-l~o~2bKo(O~2b)Kl(OgO ) + ogOKl(O~2b)Ko(O.b) 
P20 

+ 1 - l(~ Kl(~ [PI2 

-tx2alo(t~2a)ll(t~la)+(1-~lll(~ 

Pl  
P12 = -  

P2 

P2 

P20 = ~00 

Ot i = q ~ 2  + j fopi(y i 

1 
Cl(O0 -- D(ct) 

[31] 
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+ o~2aKo(o~2a)l 1 (0r la) + f1 - 1 ~  K1 (ot2a)/l (~la)]  

L 1~2)  

D2(a) = ~D(a) [~-~2 {~lall (a2a)l~ 

- a2alo(oha)ll(ala ) + (1 - 1-~Ix(a2a)ll(ala)] 
!tll2) 

1 II~(a2b) 1 
D3(a) - Kl(ab) "[  D-~--~ [Ua--~2 alaKl(a2a)I~ 

/ 1 
+ {x2aKo(a2a)I l(ala ) + 1 - - - )  K l(a2a)l ] (a  la)] 

K,(u.2b) 1 - 

+ (l - ~12)I,(~ - Ii((xb) } 

F ( a,r l,r 2) = ;2roKl ( aro)dr 0 
r I 

G(tx,r 1 ,r 2) = ; 2 r d l  (aro)dr 0 
T 1 

Z(ct,z) = l [ s i n  o~(c - z) + sin tx(c + z)] 
t~ 

and Ko, K1, I0, and 11 are the appropriate modified Bessel func- 
tions in the usual notation. 

120 
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Fig. 3 Real and imaginary components of the vector potential 
along a radial direction from point B, assuming the permeability 
of the solid constant everywhere. 

A closed form solution for the temperature distribution in the 
infinitely long rod with an internal heat source can also be ob- 
tained using a Green's function method, [2H in which no heat is 
assumed lost over the cylinder surfaces. As mentioned earlier, 
this is a reasonable model for the heating stage of the induction 
heat treatment process. The governing equation and boundary 
conditions are 

a2T 1 aT a2T q(r',z') 1 aT 
ar  2 + - -  + - [32] r Dr + az 2 K t~ at 

raT 

l~r 
= 0  r=O,r=b  

BCs aT 
0 =0 

IC T = T  0 t = 0  [33] 

where a is the thermal diffusivity and T O is the initial tempera- 
ture. 

The Green's function for this problem, i.e., the solution for 
the temperature when a delta-function heat source is described 
over a circle, can be obtained as: [2H 

G(r,z,t I f,z','C) = ~ 2  F cos (rig) cos (qz)e-~2(t-X)a~ 

oo 

4 E 1 r" 
�9 r + lrb2 [jo(~mb)]2do cos (1"123 cos (1]Z)Jo(~mr)JO(~m ) 

m=2 

e-~(~2m+ ~2)(t-X) d~ [34] 

where ~m are roots ofJl(~mb) = O, and Jo(x) and Jl(X) are the 
Bessel function of the first kind. The transient temperature solu- 
tion for induction heating is then: 
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Fig. 4 Temperature histories at three points within the cylinder 
during the induction heating process, assuming the material 
properties constant throughout the workpiece. 
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where//(r',z') = t~o) 2 [A(r',z')A*(r',z')]/2 is the magnitude of the 
heat source generated by the eddy currents in the workpiece. 

The analytical solutions for the vector potential and the tem- 
perature within the infinite cylinder that were obtained using the 
Green's function technique were compared with the finite-ele- 
ment simulation results. A finite-element mesh with 68 isopara- 
metric eight-node elements (Fig. 1) was used to model half of the 
space including the cylinder, coil, and the air gap. The compari- 
son between the Green's function solutions and the finite-ele- 
ment results were carried out for two cases. 

In the first case, the workpiece material (1080 steel) was as- 
sumed to have constant values of 3 x 106 mho/m, 7500 kg/m 3, 
650 J/kg. K, and 35 W/m. K, respectively, for the electrical con- 
ductivity, density, specific heat, and thermal conductivity. The 
relative permeability of the 1080 steel workpiece was assumed 
to be 90, whereas the air gap had a relative permeability of 1 and 
an absolute permeability of 4n x 10 -7 H/m. Figure 3 shows the 
distributions of the real and complex parts of the vector potential 
along a radial line from point B (see inset of Fig. 3) that were cal- 
culated using the Green's function method (analytical solution) 
and finite-element analysis. The temperature histories at three 
different points in the cylinder were obtained analytically and 
numerically for the initial stage of heating and are shown in Fig. 

4. From these figures, it is evident that there is excellent agree- 
ment between the finite-element and analytical solutions for the 
vector potential and the temperature. 

The second comparison between the finite-element and ana- 
lytical solutions for the vector potential was carried out for the 
case of a two-conductor cylindrical rod (see Fig. 2 and inset of 
Fig. 5). In the inset of Fig. 5, the relative permeabilities of the in- 
ner (Region 1) and outer (Region 2) regions of the rod are as- 
sumed to be kt 1 = 90 (1080 steel) and ~t 2 = 1, respectively. The air 
gap was assumed to have a relative permeability of P0 = 1. This 
configuration corresponds to a 1080 steel cylinder whose outer 
region has reached the Curie temperature. From Fig. 5, it is clear 
that there is excellent agreement between the finite-element and 
analytical solutions for the vector potential for this configura- 
tion also. For reference purposes, the finite-element and analyti- 
cal solutions for vector potential obtained in the previous case, 
i.e., for a 1080 steel cylinder having a constant permeability of 
~1 = ~ t 2  ---- ~ are also shown in Fig. 5. The effect of including the 
Curie phase transition in the model is observed by comparing the 
two curves in Fig. 5. 

Three finite-element meshes (68, 94, and 144 elements, re- 
spectively) were used to model this problem to observe the con- 
vergence of results. It was found that all three of the meshes gen- 
erated practically the same results, suggesting that the solution 
had converged at the 68-element level and stayed convergent as 
the meshes were successively refined. Although meshes slightly 
coarser than 68 elements could still generate the same solutions, 
the resulting curves were no longer smooth when plotted by 
computer. Thus, the 68-element mesh, as shown in Fig. 1, was 
used to solve this problem. 

Figures 6 to 11 describe the finite-element simulation of the 
complete induction heat treatment process for the infinitely long 
cylinder encircled by one coil. For this simulation, the 40-mm- 
diameter 1080 steel cylinder was inductively heated for 70 sec at 
the current density specified earlier, then air cooled for 5 sec and 
subsequently quenched in a 6% UCON quenchant assumed to 
be at a room temperature of 25 ~ The convection heat transfer 
coefficient for 6% UCON is given in Fig. 6, whereas that of air 
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Fig. 7 Physicalproperties of 1080 steel as a function of temperature. 

was assumed to be 30 W/m 2 �9 C. The physical and mechanical 
properties were assumed to be temperature dependent, as shown 
in Fig. 7 and 8. 

In Fig. 9, it is shown that the temperature of point A on the 
cylinder surface shows a discontinuity in its time derivative at 
the Curie temperature of 725 ~ A similar feature is observed in 
the temperature history of point B at the same time. The other no- 
ticeable discontinuities in the time derivatives of the tempera- 
ture in Fig. 9 correspond to the onset of air cooling and UCON 
quenching, and the occurrence of phase transformations within 
the workpiece. The stress histories and the residual stresses at se- 
lected points in the cylinder are shown in Fig. 10 and 11, respec- 
tively. Both the hoop and the axial residual stresses are compres- 
sive to a depth of about 4 mm from the surface (see Fig. 11), 
whereas at the center of the cylinder, the residual stress state is 
somewhat similar to hydrostatic tension. These tensile residual 

stresses at the center are potentially critical to not only dictating 
failure of the cylinder, but also in determining limits on the 
maximum allowable quenching rates. 

4.2 Induction Heat Treatment of  a Half-Space by a Single 
Coil Above It 

Figure 12 shows a schematic of the induction heating of a 
semi-infinite solid (half-space) by a single circular coil placed 
above the surface. The cross section of the coil was the same as 
that used in the previous example. Also shown in Fig. 12 is the 
finite-element mesh used to simulate the heat treatment process 
for obtaining the distributions of magnetic vector potential, tem- 
perature, and residual stress in the workpiece, which was 1080 
carbon steel. The mesh consisted of 132 isoparametric eight- 
node elements for the entire space. As in the previous example, 
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Fig. 8 Mechanical properties of 1080 steel as a function of temperature. 

the solutions for magnetic vector potential and the temperature 
distribution in the workpiece during the induction heating proc- 
ess were also derived in dosed form by using a Green's function 
method and were compared with the corresponding finite-ele- 
ment results. 

Appendix 2 gives the Green's functions for the magnetic vec- 
tor potential in different parts of the coil/workpiece system 
shown in Fig. 12. The Green's functions were obtained as the so- 
lutions for a circular delta-function coil located above the sur- 
face of the 1080 steel workpiece; the relative magnetic perme- 
ability of the 1080 steel was assumed to be 90. In the derivation, 
all the thermophysical and electrical properties of the workpiece 
were assumed to be constant and independent of temperature. 

The Green's functions of  Appendix 2 can be integrated over 
the coil cross section and the current density to obtain the vector 
potentials for this problem: 

1 ~toIo r 1 aZ at 
A ( ) ( r , z ) = ~ - J o ~ F ( r l , r 2 ) J l ( ( x r ) [ ( e  z - e  0 

+ w (e-Ca1 - e-at2)]e-aZda 

(2) rt0J0 ~ 1 _ ,~  
A (r,z) = ~ -  J0 -~F(r l ' r2 )J l ( (xr ) (e  ' - e--~12) 

(e az + w e - ~ ) d ( ~  

A( )(r,z) = ~ Jo ~ F(r l ' r2 )J l (ar )  " ([(eaZ - eat,) 

+ w(e  -at] _ e-aZ)]e-aZ + (e -az _ e-at2)(eO~ + we--aZ))da 
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where A(i)(r,z) is the potential in region i of the coil/workpiece 
system. 
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Fig. 12 Finite-element modeling for the induction heat treat- 
ment of a half-space by a coil suspended above the surface. 

~2 r = ~1/~10 = relative permeability of work material. 
The temperature distribution in the workpiece due to this 

magnetic vector potential was also obtained using a Green's 
function method in a manner similar to that described in the pre- 
vious example. The governing equations and initial conditions 
for the temperature are the same as that in Example 1 in Section 
4.1. The boundary conditions are 
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From Green's function theory, the temperature distribution in 
the half-space for heat source i/distributed throughout the solid 
is 

T(r'z't)=T~176 f f ~ O~ 
/r,k ~ = 0  r = 0  z = 0  = = 0  

~r'J0(13r)J0(13r')cos (rlz) cos 01z')e -a(f~2+n%(t-x) 

�9 il(r',-z')d~drldr'dz'd,c [381 

where//is the heat source generated by the eddy currents. For the 
strength of this heat source, see Example 1 in Section 4.1. The 
solutions obtained using finite-element and the Green's function 
(analytical) approaches were compared for the following condi- 
tions: Source current density and frequency in the coil being 1.2 
x 1010 A/m 2 and 60 Hz, respectively. The data for the electrical 
conductivity, density, specific heat, and thermal conductivity 
were assumed to be 3 x 106 mho/m, 7500 kg/m 3, 650 J/kg. K, 
and 35 W/m.  K, respectively. Other relevant geometric details 
are given in Fig. 12. The top surface of the half-space was as- 
sumed to be thermally insulated. 

The distribution of the vector potential and the temperature in 
the half-space are shown for selected points in Fig. 13 and 14, re- 
spectively. The temperature distribution is plotted for only the 
first few seconds of the induction heating cycle in Fig. 14. The 
vector potential in the vicinity of the half-space is also shown in 
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nitely long square bar. 

Fig. 13. From these figures, it is clear that there is once again ex- 
cellent agreement between the finite-element and the analytical 
solutions. This serves to validate the temperature and magnetic 
field calculations made using the present finite-element proce- 
dures. 

The finite-element simulation of a complete cycle of the in- 
duction heat treatment of the half-space was also carried out. 
The cycle consisted of heating the workpiece surface induc- 
tively for 13.5 sec using the same current density as above, fol- 
lowed by air cooling for 0.5 sec, and then quenching to a room 
temperature of 25 ~ in 6% UCON quenchant. The quenchant 
was assumed to be applied to the surface of the half-space. The 
variation of the heat transfer coefficient with temperature for the 
6% UCON quenchant was assumed from Fig. 6. For this simula- 
tion, the thermophysical and mechanical properties of 1080 steel 
were assumed to be temperature dependent as described earlier, 

a b 
Fig, 18 Finite-element modeling for the induction heat treat- 
ment of an infinitely long 1080 steel square bar encircled by an 
infinitely long coil. 
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Fig. 20 Distribution of residual stresses along the x direction 
of the square bar. 

and the Curie phase transition was also included in the modeling 
of the magnetic field. 

Three finite-element meshes (132, 164, and 216 elements, re- 
spectively) were used to model this problem to observe that the 
132-element mesh generated converged results. Also, meshes 
coarser than 132 elements were not found to be accurate enough. 
Thus, the 132-element mesh, as shown in Fig. 12, was used. 

Figure 15 shows the temperature distribution at two different 
points on the surface of the half-space during the heat treatment 
cycle. The discontinuity in the temperature gradient with the on- 
set of the Curie transition is once again clearly seen in the tem- 
perature history of point A in Fig. 15. Figure 16 shows the distri- 
butions of residual stresses c,. and o0, respectively, along the 
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radial direction on the surface of the half-space at time t = 100 
sec. Figure 17 shows the distributions of residual stresses a0 and 
ffz, respectively, along the z axis of the half-space at time t = 100 
sec. These stresses were of course induced by the heat treatment 
process. It is interesting to note that, on the surface of the half- 
space in Fig. 16, there are substantial point-to-point variations in 
the radial and hoop residual stresses, especially in the neighbor- 
hood of the coil. The present coil configuration obviously needs 
to be improved for the practical heat treatment of the half-space. 

4.3 Induction Heat Treatment of an Infinitely Long 1080 
Steel Square Bar Encircled by an Infinitely Long Coil 

To demonstrate the capability of the present finite-element 
program to simulate two-dimensional plane-strain problems, the 
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Fig. 22 Temperature histories at four different points of the 
notched circular bar during the induction heat treatment process. 

induction heat treatment of an infinitely long square bar of 1080 
steel surrounded by an infinitely long circular coil was carried 
out. Figure 18 shows the geometry of the problem. The inner and 
outer radii of the coil were 22 and 26 mm, respectively, and the 
bar was assumed to have a cross section of 28.28 by 28.28 mm 
square. The source current in the coil was assumed to be 6 • 108 
A/m, varying sinusoidally at a frequency of 60 Hz. The square 
bar was heated for 55 sec, subjected to 5 sec of air cooling, and 
then quenched in 6% UCON quenchant. A mesh with 74 
isoparametric eight-node elements was used, as shown in Fig. 
18. The material properties for the 1080 carbon steel were as- 
sumed to be temperature dependent and the same as in the pre- 
vious examples. The convective heat transfer coefficients for air 
and UCON quenchant (see Fig. 6) were also the same as in the 
earlier examples. 

Three finite-element meshes (68, 74, and 160 elements, re- 
spectively) were used to model this problem to observe that the 
74-element mesh generated converged results. Also, meshes 
coarser than 74 elements were not found to be accurate enough. 
Thus, the 74-element mesh, as shown in Fig. 18, was used. 

Figure 19 shows the finite-element results for the tempera- 
ture histories of three different points in the square bar. Again, 
the discontinuities in the temperature gradient with the onset of 
the Curie phenomenon are clearly evident in the heating cycle of 
Fig. 19. Figure 19 shows that the temperature at the surface and 
the center of  the bar at the end of  the heating cycle is in excess of 
800 ~ which indicates that the whole bar would be austenitized 
before the quench. On quenching, the austenite transforms to 
martensite or pearlite depending on the cooling rates at any 
given point. The residual stresses, as induced by the induction 
heat treatment process, are shown in Fig. 20. The residual stress 
distribution shown here is very similar to the corresponding 
stresses calculated in a circular bar whose cross section inscribes 
the square and that has been subjected to a similar heat treatment 
cycle. [12] This serves as a rule-of-thumb check for the stress cal- 
culations. The broad features of the residual stress distribution, 
such as all of the stresses being compressive at the surface and 
predominantly tensile in the interior, are in qualitative agree- 
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ment with what is experimentally observed for such a heat treat- 
ment cycle. The zone of  surface residual compression in the y- 
and z-directional stresses is found to extend to a depth of ap- 
proximately 5 mm from the surface in Fig. 20. Of course, the ten- 
sile stresses in the interior make the central regions of the square 
bar prone to failures when subjected to external loads. 

4.4 Induction Heat Treatment of a Finite 1080 Steel Circular 
Notched Bar 

The last example considers the simulation of the induction 
heat treatment of a notched circular bar by a single coil. Many 
engineering components such as crankshafts, camshafts, etc., 
contain fillets and notches that are potential zones of failure be- 
cause of the stress concentrations that occur in such areas. Local 
induction hardening of these regions to introduce residual com- 
pressive stresses or increase the hardness can often be used to re- 
duce the probability of failure in such regions. 

Figure 21 shows the geometrical configuration for the simu- 
lation of heat treatment of a 1080 steel bar of circular cross sec- 
tion containing a single semicircular notch. The bar was as- 
sumed to be 120 mm long and the coil surrounded the notched 
area. The circular coil had a square cross section of  4 by 4 mm. 
The finite-element mesh consisted of 115 isoparametric eight- 
node elements. A sinusoidally varying source current of density 
9.5 • 109 A/m 2 with a frequency of 60 Hz was applied for 27 sec 
to heat the notched area; the bar was then subjected to air cooling 
for 1 sec and then quenched on cylindrical surfaces in a 6% 
UCON quenchant. The material properties for the 1080 steel and 
the quenchant were the same as in the previous examples. 

Three finite-element meshes (94, 115, and 220 elements, re- 
spectively) were used to model this problem to observe that the 
115-element mesh generated converged results. Also, meshes 
coarser than 115 elements were not found to be accurate enough. 
Thus, the 115-element mesh, as shown in Fig. 21, was used. 

Figure 22 shows the temperature histories at selected points 
in the bar during the heat treatment cycle. From this figure, it is 
observed that the surface region of the notch has exceeded the 
austenitizing temperature before quenching began. Figure 23 

shows the time evolution of the axial stresses at two points of the 
notched region during the heat treatment process. The distribu- 
tion of residual stresses along the radius OA of the notched bar is 
shown in Fig. 24. At point A where the elastic stress concentra- 
tion is the greatest, the residual axial stress has a large compres- 
sive value of about 900 MPa. The compressive stress region ex- 
tends to a depth of about 4 mm in Fig. 24. The compressive 
residual stress would be beneficial to reducing failures from the 
notch. It is clear that the localized induction heat treatment has 
led to a zone of high residual compressive stress in the axial di- 
rection at the root of the notch. Furthermore, the simulation also 
showed that the material near the notch root is mostly martensite 
whose yield stress is in excess of 1000 MPa. 

5 Conclusions 

The residual stresses, temperature distributions, and the mag- 
netic field developed during the induction heat treatment of 
1080 steel bar have been calculated using a finite-element for- 
mulation and solution procedure. The principal features of this 
formulation include the incorporation of  the Curie phase transi- 
tion in the calculation of the magnetic field during heating, the 
use of nucleation and rate equations to describe the nonisother- 
mal phase transformations taking place in 1080 steel during 
quenching, and temperature-dependent material properties. 
Four different examples were analyzed to validate the present 
formulation and to demonstrate its predictive capabilities. Ana- 
lytical solutions using Green's function methods were derived 
for the magnetic field and temperature distributions in an infi- 
nitely long 1080 steel cylinder encircled by a single coil and in a 
half-space suspended below a coil. These enabled validation of 
the magnetic field and temperature calculations. Analysis of the 
induction heat treatment of steel cylinders of square and circular 
cross sections and a notched steel bar are of practical relevance 
to engineering applications such as the heat treatment of solid 
piston pins and camshafts used in engines. 

Ongoing work is directed toward controlled quenching and 
induction heat treatment experiments to further validate the 
computational results and to extend the program to treat more 
complex geometries. Furthermore, the feasibility of using the fi- 
nite-element procedures to efficiently design heat treatment pa- 
rameters a priori for obtaining specified residual stress distribu- 
tions and microstructure pattern in steels is being investigated. 
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Appendix 1 

The solutions of the vector potential for the infinitely long 
cylinder encircled by a delta coil are 

- ~  I~Cl 11 )roK (txr O) A(1)(r,z - z0) = (t~) (o~lr l 

cos a(z - zo)da 

_ J0 r A(2)(r'z - Zo) - - ~ -  "0 

[cz(a)l 1(%r) + D2(a)K t (%r)lroK t (~r o) 
cos o~(z - zo)dO~ 

z" - 0 ) = ~ -  [Ii(Ctr) 

+ D3(a)Kl((zr)]roKt(OU'o) cos (x(z - zo)da 

A(4)(r,z - z"  = ~OJo 
0) T % [O3((x)r~176 

+ roIl(aro)]Kl(ar) cos a(z - zo)da [39] 

where a l ,  a2, Cz(a), C2(a), De(m), C3(a), and D3(a) are the 
same as those listed in the main text. 

Appendix 2 

The solutions of the magnetic vector potential for the half- 
space under a delta coil are 

A ( l ' ( r , z ) = ~  C rOJl(tXro)Jl(tXr)(eC~l + we-al)e-aZdot 

(2- ,_ d0 r A )(r,z) - 2 J 0 r~176 + we-aZ)dlx 

= ~ ~ roJl(c%)Jl(ar)e-~l(1 + w)e~lZdc~ [40] A(3)(r,z) 
o 

where w = (~r ~ - ~l)/([,trO~ -t- ~1), 0~1 = ~/~2 + jt.0~l(Yl, and ~r = 
gl/g0 = relative permeability of work material. 

The Green's function for the temperature field within the 
half-space under a coil is 

G(r'z't l r"z"~) = 2  C =0 ~n=o ~r'J~176 

cos (rlz) cos (rlz')e-a(~Z+~2)(t-X)d~drl [41] 
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